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1 Subgradients and Proximal Operators

(i, 2 pts) Show that ∂f(x) is a convex and closed set.

Convex is easy to show.
Closeness can be shown by arguing the complement of this set is
open

(ii, 2 pts) Show that ∂f(x) ⊆ N{y:f(y)≤f(x)}(x), where recall NC(x) denotes the
normal cone to a set C at a point x. Give an example to show that this
containment can be strict.

if g ∈ ∂f(x), then f(y) ≥ f(x) + gT (y − x)
N{y:f(y)≤f(x)}(x) = {g : gTx ≥ gT y, for y f(y) ≤ f(x)}

If f(y) ≤ f(x), f(x) ≥ f(y) ≥ f(x) + gT (y − x), gTx ≥ gT y, i.e.,
g ∈ N{y:f(y)≤f(x)}(x)

(iii, 2 pts) Let p, q > 0 such that 1
p + 1

q = 1. Consider the function f(x) = ||x||p =

(
∑n

i=1 x
p
i )1/p. Show that ∀x, y:

xT y ≤ ||x||p||y||q.

The above inequality is known as Hölder’s inequality. Hint: you may use
the dual representation of the `p norm, namely, ||x||p = max||z||q≤1 z

Tx.

Proof:
f(x) = ||x||p = max||z||q≤1 z

Tx ≥ ( y
||y||q )Tx therefore, ||x||p||y||q ≥

yTx
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(iv, 3 pts) Use Hölder’s inequality to show that for f(x) = ||x||p, its subdifferential
is ∂f(x) = argmax||z||q≤1z

Tx. (You are not allowed to use the rule for
the subdifferential of a max of functions for this problem.)

Proof: we know the max||z||q≤1 z
Tx = ||x||p So we want to show

that ∂||x||p = {z | ‖z‖q ≤ 1 and z>x = ‖x‖p},

To show A = B, we first show,

1. if x ∈ A, then x ∈ B

If z ∈ ∂||x||p, ∀y, we have ||y||p ≥ ||x||p + zT (y − x)
Let y = 0 and y = 2x, we have zTx = ||x||p, plug it into the
inequality we have ||y||p ≥ zT y
zT y
||y||p ≤ 1, let u = y

||y||p , uT z ≤ 1

we know that max||u||p≤1 u
T z = ||z||q, so ||z||q ≤ 1, which means

z ∈ {z | ‖z‖q ≤ 1 and z>x = ‖x‖p}

2. if x ∈ B, then x ∈ A

If z ∈ {z | ‖z‖q ≤ 1 and z>x = ‖x‖p} then by Hölder’s inequality
zT y ≤ ||y||p||z||q ≤ ||y||p
||y||p ≥ ||x||p + zT − ||x||p = ||x||p + zT (y − x)
therefore, z ∈ ∂||x||p
∂||x||p = {z | ‖z‖q ≤ 1 and z>x = ‖x‖p} = argmax||z||q≤1z

Tx

2 Properties of Proximal Mappings and Subgra-
dients

(a, 4pts) Prove one direction of the finite pointwise maximum rule for subdiffer-
entials: The subdifferential of f(x) = maxi=1,...,n fi(x), for convex fi,
i = 1, . . . ,m, satisfies

∂f(x) ⊇ conv

 ⋃
i:fi(x)=f(x)

∂fi(x)

 . (1)

Easy Proof, let set S = {i : fi(x) = f(x)} and check the con-
vex combination of those functions and the subgradients of those
functions
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(b, 4pts) Recall the definition of the proximal mapping: For a function h, the prox-
imal mapping proxt is defined as

proxt(x) = argminu
1

2t
‖x− u‖22 + h(u). (2)

Show that proxt(x) = u⇔ h(y) ≥ h(u) + 1
t (x− u)>(y − u) ∀y.

Proof:
proxt(x) = argminu

1
2t ||x− u||

2
2 + h(u)

1. If h(y) ≥ h(u) + 1
t (x− u)T (y − u), and we know

1
t (x−u)T (y−u) ≥ 1

2t (2x
T y−2xTu+uTu−yT y) (easy to find out

by simple algebra, (u− y)T (u− y) ≥ 0 )

then we have ∀y, 1
2t ||x− y||

2
2 + h(y) ≥ 1

2t ||x− u||
2
2 + h(u), i.e.

u = argminu
1
2t ||x− u||

2
2 + h(u) = proxt(x)

2. If proxt(x) = u, we have 0 ∈ 1
t (u−x)+∂h(u), 1

t (x−u) ∈ ∂h(u),
by the definition of subgradient,
∀y, h(y) ≥ h(u) + 1

t (x− u)T (y − u)

Therefore, proxt(x) = u⇔ h(y) ≥ h(u) + 1
t (x− u)>(y − u) ∀y

(c, 5 pts) Show how we can compose an affine mapping with the proximal operator.
That is, assuming f(x) = g(Ax + b), where x ∈ Rn, A ∈ Rm∗n, and
b ∈ Rm, and also assuming AAT = aIm, for some scalar a > 0, then

proxf (x) = x+
1

a
AT (proxag(Ax+ b)−Ax− b) (3)

Hint: you may find it helpful to reparameterize g(Ax+ b) as g(z) with the
constraint that z = Ax+ b, and then apply this constraint as a Lagrange
multipler.
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Proof:
proxf (x) = argminu

1
2 ||u− x||

2
2 + f(u)

= argminu
1
2 ||u− x||

2
2 + g(Au+ b)

= argminu,z
1
2 ||u− x||

2
2 + g(z), s.t, z = Au+ b

Lagranian multplier: L(u, z, v) = 1
2 ||u−x||

2
2+g(z)+vT (Au+b−z)

We know the it has strong duality because the constraint satisfy
the slater’ condition, so we can apply KKT condtion that tells us

u = x−AT v
z = Au+ b
0 ∈ ∂g(z)− v
by first and second condition, we have v = 1

a (Ax+ b− z)
and by third condition, we have 0 ∈ ∂g(z) + 1

a (z − Ax − b) so z
minimize g(z) + 1

2a ||z −Ax− b||
2
2, so z = proxag(Ax+ b)

u = x−AT v = x+ 1
aA

T (proxag(Ax+ b)−Ax− b) = proxf (x)

(d, 5 pts) Show that if ∀y ∈ dom(g), ∂g(proxf (y)) ⊇ ∂g(y), then

proxf+g(x) = proxf (proxg(x)) (4)

Hints:

1. Consider proxf+g(x), proxg(x), and proxf (proxg(x)).

2. The solution of the proximal can be characterized as:

u = proxh(x) :=u
1

2
‖u− x‖22 + h(u) ⇐⇒ 0 ∈ u− x+ ∂h(u)

3. ∂(f + g) = ∂f + ∂g
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Proof:
proxf+g = argmin 1

2 ||z − x||
2
2 + f(z) + g(z)

proxf = argmin1
2 ||z − x||

2
2 + f(z)

proxg = argmin 1
2 ||z − x||

2
2 + g(z)

0 ∈ proxf+g(x)− x+ ∂f(proxf+g(x)) + ∂g(proxf+g(x)))
0 ∈ proxg(x)− x+ ∂g(proxg(x))
0 ∈ proxf (proxg(x))− proxg(x) + ∂f(proxf (proxg(x)))

Sum up the last 2 statement, we know

0 ∈ proxf (proxg(x))− x+ ∂g(proxg(x)) + ∂f(proxf (proxg(x)))

Let y = proxg(x), 0 ∈ proxf (y)−x+∂g(y)+∂f(proxf (y)) because
∂g(proxf (y)) ⊇ ∂g(y), therefore we have

0 ∈ proxf (y)− x+ ∂g(proxf (y)) + ∂f(proxf (y))

Apparently this says, proxf (y) satisfy, 0 ∈ proxf+g(x) − x +
∂f(proxf+g(x)) + ∂g(proxf+g(x))),
which means

proxf (proxg(x)) = proxf+g(x)

3 Convergence Rate for Proximal Gradient De-
scent (20 pts) [Po-Wei]

In this problem, you will show the sublinear convergence for gradient descent
and proximal gradient descent, which was presented in class.

To be clear, we assume that the objective f(x) can be written as f(x) =
g(x) + h(x), where

(A1) g is convex, differentiable, and dom(g) = Rn.

(A2) ∇g is Lipschitz, with constant L > 0.

(A3) h is convex, not necessarily differentiable, and we take dom(h) = Rn for
simplicity.

(a) We begin with the simple case f(x) = g(x); that is, h(x) = 0 and can be
ignored. We will prove that the gradient descent converges sublinearly in
this case. As a reminder, the iterates of gradient descent is computed by

x+ = x− t∇g(x), (5)
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where x+ is the iterate succeeding x. Henceforth, we will set t = 1/L for
simplicity.

(i, 3pt) Show that

g(x+)− g(x) ≤ − 1

2L
‖∇g(x)‖2.

That is, the objective value is monotonically decreasing in each up-
date. This is why gradient descent is called a “descent method.”

By Lipschtiz continuity of the gradient, we have g(y) ≤ g(x)+
∇g(x)T (y − x) + L

2 ||y − x||
2
2

Let y = x+ − t∇g(x), we have

g(x+) ≤ g(x)− (t− t2L
2 )||∇g(x)||22

therefrore, g(x+)− g(x) ≤ − 1
2L‖∇g(x)‖2.

(ii, 3pt) Using convexity of g, show the following helpful inequality:

g(x+)− g(z) ≤ ∇g(x)T (x− z)− 1

2L
‖∇g(x)‖2, ∀z ∈ Rn.

By convexity, ∀z, g(z) ≥ g(x) +∇g(x)T (z − x)
g(x)− g(z) ≤ ∇g(x)T (x− z), and by (i),
g(x+)− g(z) ≤ ∇g(x)T (x− z)− 1

2L‖∇g(x)‖2

(iii, 2pt) Show that

g(x+)− g(x?) ≤ L

2

(
‖x− x?‖2 − ‖x+ − x?‖2

)
,

By (ii), we have g(x+) − g(x∗) ≤ ∇g(x)(x − x∗) −
1
2L‖∇g(x)‖2 = L

2 ( 2
L∇g(x)T (x − x∗) − 1

L2 ‖∇g(x)‖2) =

−L
2 (‖ 1

L∇g(x) − (x − x∗)‖2 − ‖x − x∗‖2) = L
2 (‖x − x∗‖2 −

‖x+ − x∗‖2)

where x? is the minimizer of g, assuming g(x?) is finite.

(iv, 2pt) Now, aggregating the last inequality over all steps i = 0, . . . , k, show
that the accuracy of gradient descent at iteration k is O(1/k), i.e.,

g(x(k))− g(x?) ≤ L

2k
‖x(0) − x?‖2.

Put differently, for an ε-level accuracy, you need to run at most
O(1/ε) iterations.
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By summing over iteration, we have Σk
i=1g(x(i)) − g(x∗) ≤

L
2 (‖x(0)− x∗‖22)
And we know the iteration is always dreasing in value, so
Σk

i=1g(x(i))− g(x∗) ≥ kg(x(k))− kg(x∗) therefore,

g(x(k))− g(x∗) ≤ L
2k (‖x(0) − x∗‖22)

(b) Now consider the general h in assumption (A3). We will prove that the
proximal gradient descent converges sublinearly under such assumptions.
Specifically, the iterates of proximal gradient descent is computed by

x+ = proxth (x− t∇g(x)) , (6)

where again we will set t = 1/L for simplicity. Further, we define the
useful notation

G(x) =
1

t

(
x− x+

)
.

We will see (in the following proofs) that G(x) behaves like ∇g(x) in
gradient descent.

(i, 3pt) Show that

g(x+)− g(x) ≤ − 1

L
∇g(x)TG(x) +

1

2L
‖G(x)‖2.

we know g(x+)− g(x) ≤ − 1
2L‖∇g(x)‖2

and 1
2L (‖G(x)‖2 − 2∇g(x)TG(x) + ‖∇g(x)‖2) ≥ 0 therefore

g(x+)− g(x) ≤ − 1
L∇g(x)TG(x) + 1

2L‖G(x)‖2

(ii, 3pt) Show that

f(x+)− f(z) ≤ G(x)T (x− z)− 1

2L
‖G(x)‖2, ∀z ∈ Rn.

Note that setting z := x verifies the proximal gradient descent is a
“descent method.” (Hint: Look back at what you did in Q2 part (b)
and add the missing h to (i).)
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By looking at Q2 part (b), we know x+ = proxth (x− t∇g(x))
means that
h(x+)−h(z) ≤ − 1

t (x− t∇g(x)−x+)T (z−x+) = G(x)T (x+−
x) +∇g(x)T (z − x+)

g(x+)− g(z) ≤ ∇g(x)T (x− z)− 1
L∇g(x)TG(x) + 1

2L‖G(x)‖2

Sum up the two inequlaities,
f(x+)−f(z) ≤ ∇g(x)T (x−x+)− 1

L∇g(x)TG(x)+ 1
2L‖G(x)‖2+

G(x)T (x+ − z)

By some simple algebra, we can prove that ∇g(x)T (x−x+)−
1
L∇g(x)TG(x) + 1

2L‖G(x)‖2 + G(x)T (x+ − z) = G(x)T (x −
z)− 1

2L ||G(x)||2

Therefore, f(x+)−f(z) ≤ G(x)T (x− z)− 1
2L‖G(x)‖2, ∀z ∈

Rn.

(iii, 4pt) Show that

f(x+)− f(x?) ≤ L

2

(
‖x− x?‖2 − ‖x+ − x?‖2

)
,

where x? is the minimizer of f . Then show that

f(x(k))− f(x?) ≤ L

2k
‖x(0) − x?‖2.

That is, the proximal descent method achieves O(1/k) accuracy at
the k-th iteration.

Proof:
It’s very easy, let z = x∗ in b(ii), the rest follows the exact
same logic as in a(iii)

Bonus. If we further assume g being strongly convex with constant m, show
that the proximal gradient descent converges linearly, that is,

f(x+)− f(x?) ≤
(

1− m

L

)
(f(x)− f(x?)) .

You can use the following lemma. [Proximal Polyak- Lojasiewicz Inequality] Let
λ > 0 be a scalar. Define

φ(x;λ) = −2λmin
y

(
∇g(x)T (y − x) +

λ

2
‖y − x‖2 + h(y)− h(x)

)
,

then
φ(x;λ1) ≤ φ(x;λ2) if λ1 ≤ λ2.
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Note that φ(x;λ) is related the minimum objective value in the proximal op-
erators.
Hint: Bound f(x)− f(x?) and f(x)− f(x+) using φ.

A very useful conclusion, remember, a lipschitz continuous gradient is
suggesting a bound on the hessian matrix, why?

Proof:
‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖
‖∇f(x+ hv)−∇f(x)‖ ≤ L‖hv‖

By the definition of hessain, ∇2f(x)v = limh→0
∇f(x+hv)−∇f(x)

h
and the definition of matrix norm(operator norm)
‖A‖ = sup{‖Ax‖, ‖x‖ = 1}

from ‖∇f(x+ hv)−∇f(x)‖ ≤ L‖hv‖, we have

limh→0
‖∇f(x+hv)−∇f(x)‖

h ≤ L‖v‖, i.e, ‖∇2f(x)v‖ ≤ L‖v‖,
take supreme on both side, ‖|∇2f(x)‖ ≤ sup{‖v‖=1}L‖v‖ = L
since we have operator norm less or equal to L,

and from ‖∇2f(x)v‖ ≤ L‖v‖, ∀v we know that, ∀v, ‖∇
2f(x)v‖
‖v‖ ≤ L

Say v is one of the eigenvector of the hessian, we have, λ ≤ L, therefore,
the largest eigenvalue is less than L, that is saying, ∇2f(x) � LI

Strong convexity is giving lower bounds of the hessian, i.e.,∇2f(x) � mI,
why?
strong convexity says:
g(x) = f(x)− m

2 ‖x‖
2
2 is convex, i.e., ∇2g(x) � 0, i.e., ∇2f(x) � mI

This lemma is saying that, the condition number of the hessian is critical
to the convergence speed, if the condition number is very large, i.e., ill-
conditioned, m

L is very small, close to 0, which makes each iteration
doesn’t get closer to optimal value
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